

RISE OF NATION ACADEMY
"We create the Impeccable creature"
Test Paper
Standard - XII
Subject -Mathematics

1 Marks Question:

Q. 1 If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is -
(a) reflexive
(b) transitive
(c) symmetric
(d) None of these
Q. 2 If $A=\{x \in Z: 0 \leq x \leq 12\}$ and R is the relation in A given by $R=\{(a, b): a$ $=\mathrm{b}\}$. Then, the set of all element related to 1 is
(a) $\{1,2\}$
(b) $\{2,3\}$
(c) $\{1\}$
(d) $\{2\}$
Q. 3 The value of $\tan ^{-1}\left[2 \sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{2}\right)\right]$ is
(a) $\frac{\pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{-\pi}{3}$
(d) $\frac{\pi}{6}$
Q. 4 If A and B are two matrices of the order $3 x m$ and $3 \times n$ respectively and m $=n$, then the order of the matrix $(5 A-2 B)$ is-
(a) $\mathrm{m} \times 3$
(b) 3×3
(c) $m \times n$
(d) $3 \times n$
Q. 5 If the sides of an equilateral triangle are increasing at the rate of $4 \mathrm{~cm} / \mathrm{s}$, then the rate at which the area increases, when side is 5 cm , is
(a) $10 \mathrm{~cm}^{2} / \mathrm{s}$
(b) $\sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
(c) $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$ (d) $\frac{10}{3} \mathrm{~cm}^{2} / \mathrm{s}$
Q. $6 \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x$ is equal to -
(a) $2 \sqrt{2}$
(b) $2(\sqrt{2}+1)$
(c) 2
(d) $2(\sqrt{2}-1)$
Q. $7 \int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$ is equal to

[^0](a) $\frac{1}{\sin x+\cos x}+c(b) \log |\sin x+\cos x|+c$ (c) $\log |\sin x-\cos x|+c$ (d) $\frac{1}{(\sin x+\cos x)^{2}}+c$
Q. 8 if $f(x)=2 x$ and $g(x)=\frac{x^{2}}{2}+1$, then which of the following can be a discontinuous function?
(a) $f(x)+g(x)$
(b) $f(x)-g(x)$
(c) $f(x) \cdot g(x)$
(d) $\frac{g(x)}{f(x)}$
Q. 9 Two numbers of possible matrices of order 3×3, with each entry 2 or 0 is
(a) 9
(b) 27
(c) 81
(d) 512
Q. 10 Matrices A and B will be inverse of each other only if
(a) $A B=B A$
(b) $A B=B A=0$
(c) $A B=0, B A=1$
(d) $A B=B A=1$
Q. 11 Let A be the non - singular square matrix of order 3×3, then $|\operatorname{adj} A|$ is equal to
(a) $|A|$
(b) $|A|^{2}$
(c) $|A|^{3}$
(d) $3|A|$
Q. 12 The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is

$\begin{array}{ll}\text { (a) discontinuous at only one point } & \text { (b) discontinuous at exactly two points }\end{array}$
(c) discontinuous at exactly three points
(d) None of the above
Q. 13 If $\cos y=x \cos (a+y)$ with $\cos a \neq 1$, then $\frac{d y}{d x}$ is
(a) $\frac{\sin ^{2}(a+y)}{\sin a}$
(b) $\frac{\cos ^{2}(a+y)}{\sin a}$
(c) $\sin ^{2}(a+y) \sin a$
(d) None of
these
Q. 14 Derivative of $\cot ^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right] .0<\frac{\pi}{2}$ is
(a) $\frac{1}{2}$
(b) 1
(c) 2
(d) None of these
Q. 15 If $x^{y}=y^{x}$, then $x(x-y \log x) \frac{d y}{d x}$ is equal to -
(a) $y(y-x \log y)$
(b) $y(y+x \log y)$
(c) $x(x+y \log x)$
$x(y-x \log y)$
Q. 16 For the function $f(x)=x^{3}-5 x^{2}-3 x, x \in(a, b)$, where $\mathrm{a}=1$ and $\mathrm{b}=$ 4, the value of c for mean value theorem where $c \in(a, b) i s-$
(a) 1
(b) $\sqrt{3}$
(c) 2
(d) $5 / \sqrt{2}$
Q. 17 If an error of 1° is made in measuring the angle of a sector of radius 30 cm , then the approximate error in its area is
(a) $450 \mathrm{~cm}^{2}$
(b) $25 \pi \mathrm{~cm}^{2}$
(c) $2.5 \pi \mathrm{~cm}^{2}$
(d) None of these
Q. 18 A right circular cylinder which is open at the top and has a given surface area, will have the greatest volume, if its height h and radius r are related by
(a) $2 \mathrm{~h}=\mathrm{r}$
(b) $h=4 r$
(c) $h=2 r$
(d) $h=r$
Q. 19 Family of curves $\mathbf{y}=\mathrm{F}(\mathrm{x})+\mathrm{C}$ can be represented geometrically by shifting any one of the curves \qquad to itself. Here, A refers to
(a) perpendicular
(b) parallel
(c) Both (a) and (b)
(d) None of these 2 Marks Question:
Q. 20 The value of $\int_{\frac{\pi}{-2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$ is
(a) zero
(b) 2
(c) π
(d) 1
(a) reflexive
(b) transitive
(c) symmetric
(d) None of these
Q. 21 Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$.
Q. 22 If matrix $\left[\begin{array}{ccc}0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0\end{array}\right]$ is a skew symmetric matrix, then find the values of a, b and c.
Q. 23 Show that the function $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}+\cos x, \\ 2, \\ \text { if } x=0\end{array}\right.$ if $x \neq 0$ is continuous at $x=0$.
Q. 24 If $x=a \cos \theta$ and $y=b \cos \theta$, then find $\frac{d y}{d x}$.
Q. 25 A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y - coordinate is changing 2 times as fast as the x coordinate.
Q. 26 It is given that at $x=1$, the function $x^{2}-62 x^{2}+a x+9$ attains maximum value on the interval $[0,2]$. Find the value of a.

4 Marks Question:

Q. 27 Find $\int \frac{2 \cos x}{(1+\sin x)\left(1+\sin ^{2} x\right)} d x$.
Q. 28 Evaluate $\int[\sin (\log x)+\cos (\log x)] d x$.
Q. 29 The area of the region bounded by the curve $y^{2}=\sin x$ between 0 and 2π is
(a) 2 sq. units
(b) 4 seq. units
(c) 3 sq. units
(d) 1 sq. units
Q. 30 Show that the semi - vertical angle of the cone of the maximum volume and of given slant height is $\cos ^{-1} \frac{1}{\sqrt{3}}$
Q. 31 If the function $f(x)=\left\{\begin{array}{c}3 a x+b, \text { if } x>1 \\ 11, \text { if } x=1 \\ 5 a x-2 b, \text { if } x<1\end{array}\right.$ is continuous at $x=1$, then find the values of a and b.
Q. 32 Given a function define by $f(x)=\sqrt{4-x^{2}} ; 0 \leq x \leq 2,0 \leq f(x) \leq 2$. Show that f is bijective function.

6 Marks Question:

Q. 33 If $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\theta$, then prove that $\frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \theta+\frac{y^{2}}{b^{2}}=\sin ^{2} \theta$.
Q. 34 Find the inverse of Metrix $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & -2 & -1 \\ 2 & 1 & -1\end{array}\right]$ by elementary transformation method and verify that $A \mathrm{~A}^{\mathbf{1}}=I$.
Q. 35 If $A=\left[\begin{array}{ccc}2 & -1 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then verify that $A^{3}-6 A^{2}+9 A-4 I=$ O and hence find A^{-1}.
Q. 36 Find the equation of tangent to the curve $x=a \cos \theta+a \theta \sin \theta, y=$ $a \sin \theta-a \cos \theta$ at any point θ of the curve. Also show that at any point θ of the curve the normal is at a constant distance from origin.
Q. 37 Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4 r}{3}$. Also, show that the maximum volume of the cone is $\frac{8}{27}$. Of the volume of sphere.
Q. 38 Show that the condition that the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+$ $b_{1} y^{2}=1$ should intersect orthogonally is that $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$.

[^0]: CBSE Sample Papers |CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

